

# Ce:YAG



# 描述

Ce:YAG单晶在340nm和460nm处有明显的吸收峰,这是Ce³+的特征吸收峰。目前商用白光LED中使用的InGaN蓝光芯片的发射波长为460nm。中心波长460nm的Ce:YAG单晶的宽吸收带表明,它能有效地吸收蓝晶片发出的蓝光,将蓝晶片发出的蓝光和Ce:YAG晶片发出的黄光叠加成白光。此外,Ce:YAG单晶具有良好的热稳定性,这对大功率白光LED器件的制造尤为重要。随着Ce:YAG晶片厚度的增加,蓝晶片和Ce:YAG晶片封装的白光LED器件的光效率逐渐提高,色温和显色指数逐渐降低,随着晶片厚度的增加,Ce³+的含量相对增加。吸收的蓝光越多,发出的黄光越多,导致晶圆的发光从蓝色变成白色变成黄色。

# 特征

- 良好的能量分辨率
- 不吸湿性
- 快衰变时间
- 高机械阻力
- 高耐化学性

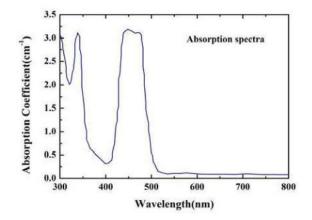
## 应用

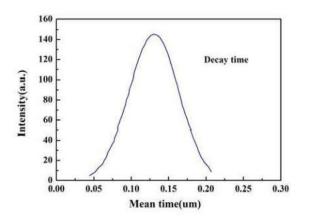
- CT、PET、SPECT
- β和X射线计数
- 成像屏幕
- 白色LED照明

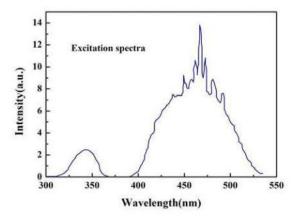
# 参数

#### 物理和化学特性

| 属性                          | 数值                                                |
|-----------------------------|---------------------------------------------------|
| 材料                          | Ce:Y <sub>3</sub> Al <sub>5</sub> O <sub>12</sub> |
| 密度(g/cm³)                   | 4.55                                              |
| 熔点(℃)                       | 1970                                              |
| 硬度(Mohs)                    | 8.5                                               |
| 吸湿性                         | No                                                |
| 解离面                         | No                                                |
| 溶解度(g/100gH <sub>2</sub> O) | N/A                                               |
| 热膨胀 (C·1)                   | 8.5*10-6                                          |





# Ce:YAG


### 闪烁体特性

| 属性                   | 数值      |
|----------------------|---------|
| 波长 (最大发射) (nm)       | 550     |
| 波长范围 (nm)            | 500-700 |
| 衰变时间 (ns)            | 70      |
| 发光量(光子/keV)          | 35      |
| 折射率 (最大发射)           | 1.82    |
| 辐射长度 (cm)            | 3.5     |
| 透光率 (%)              | ТВА     |
| 透光率 (um)             | ТВА     |
| 反射损耗/表面 (%)          | ТВА     |
| 能量分辨率 (%)            | 7.5     |
| 光电子产率(NaI(TI)% (射线用) | 35      |
| 中子俘获截面 (靶恩)          | ТВА     |

## **SPECTRA**









有什么问题请联系我们 的技术工程师,在线为 您解答



了解更多资讯,请关注 我们的公众号--南京光 宝光电科技有限公司

